5 Technologies Bringing Healthcare Systems into the Future

5 Technologies Bringing Healthcare Systems into the Future

If you think you’ve got a bad case of the travel bug, get this: Dr. John Halamka travels 400,000 miles a year. That’s equivalent to fully circling the globe 16 times.

Halamka is chief information officer at Harvard’s Beth Israel Deaconess Medical Center, a professor at Harvard Medical School, and a practicing emergency physician. In a talk at Singularity University’s Exponential Medicine last week, Halamka shared what he sees as the biggest healthcare problems the world is facing, and the most promising technological solutions from a systems perspective.

“In traveling 400,000 miles you get to see lots of different cultures and lots of different people,” he said. “And the problems are really the same all over the world. Maybe the cultural context is different or the infrastructure is different, but the problems are very similar.”

Less of This, More of That

From Asia to Europe and Africa to America, societies are trying to figure out how best to manage an aging population. Japan is perhaps the most dramatic example: “In Japan 25 percent of the population is over the age of 65, the birth rate is 1.4, and hardly any primary care physicians are going into the profession,” Halamka said.

Longer lifespans around the world are a testament to medical progress, but they also mean rising healthcare costs and higher rates of chronic disease. Combine that with low birth rates and the implications are magnified; there’s not going to be anyone to pay for the care of this aging society.

That care isn’t just for the body, it’s for the mind too. Anxiety and depression have become something of an epidemic, whether due to the relentless pace of modern life, the isolation of increasingly individualist cultures, or the comparisons and competitiveness brought about by social media. “Across the world no one’s really addressing the mental health burden very well,” Halamka said.

John Halamka at Exponential Medicine

All these issues would be more solvable if there were more people to work on solving them—that is, more doctors. But there’s actually a marked shortage of clinicians, and of specialization in the most high-demand fields. “You’re not seeing a distribution of the kind of services people need,” Halamka said. This is especially a problem in rural areas.

Finally, the systems we’ve built to help with the above problems have themselves become a problem. Multiple countries are trying to figure out how to deal with a lack of interoperability and data sharing in their medical information technology.

Rather than being highly imaginative or far-reaching, Halamka noted, many of the healthcare technologies the world needs are actually quite simple and practical.

The Tech That Can Help

Machine Learning

Working for the Bush and Obama administrations, Halamka was a first-hand witness to the way regulation can create a burden for clinicians. Between the FDA recommending that doctors monitor patient implants at every visit, the CDC recommending a travel history be taken at every visit, Medicare and Medicaid putting forth 20 quality measures for every visit, Halamka said, “By the time we were done, there were 140 required data elements to be entered at every visit while making eye contact, being empathetic and never committing malpractice. It’s not possible!”

This is where machine learning can help. Halamka joked that if AI can replace your doctor, AI should replace your doctor; the things we really want our doctors to do—listen to us, respect our care preferences, guide us through all the possibilities—can’t be done by a machine.

But AI can reduce clinicians’ burden of documentation using functions like natural language processing. Imagine a version of Alexa that listens to doctor-patient conversations, takes notes, and produces charts—all the doctor has to do is review and sign.

AI can also augment physicians’ capacity to understand evidence and make informed decisions. “There are 800 papers published in my field every week,” Halamka said. “I’m a little behind on my reading.”

Those decisions can run from which antibiotic to prescribe a patient to the amount of time to reserve an operating room for. After implementing a machine learning algorithm that predicted how much time patients would need in the OR by comparing them to thousands of similar patients, Beth Israel was able to free up 30 percent of its OR schedule and enhance its throughput.

Internet of Things

Earlier this year, Halamka was diagnosed with primary hypertension. His lifestyle and diet essentially couldn’t be healthier—he’s a vegan who avoids both caffeine and alcohol—but it turned out the condition was hereditary. His doctor prescribed beta blockers. “Ugh,” he said. “They’re like negative espresso.” 50 milligrams of metoprolol was the dose for a person of his size, age, and gender—but, he realized, all that had no bearing on his body’s ability to metabolize metoprolol.

So he decided to do a little experiment. While varying the dosage, he used sensors around his home and office to monitor his mood, energy, blood pressure, pulse, and other indicators. “I was able to tailor my medication to the right dose, with the right output, and the fewest side effects for me,” he said. “And that’s the kind of thing we all want.”

In the near future we’ll be able to 3D print pills, assess their efficacy with the smart devices in our homes, and tailor them to the optimal dosage for our bodies.

Big Data

Halamka pointed out that there are 26 different electronic health records (EHRs) used in the Boston region alone. But Fast Health Interoperability Resources (FHIR), an application programming interface for exchanging electronic health records, will soon enable new ways to aggregate data from different EHRs. Patients will be able to look at their lifetime experience, and not just a single silo in a single EHR.

“My hope is the data of the past will inform the care of patients in the future,” Halamka said.

When his wife, who is Korean, was diagnosed with stage three breast cancer, he used an open source tool called i2b2 to mine data from Harvard’s 17 hospitals, looking at treatments and outcomes of women with the same type of cancer and of the same age and ethnicity.

He found that Taxol, the drug used to treat this cancer, causes neuropathy (numbness in the hands and feet) in Asian women. “My wife is an artist, so saying ‘you’re cured but you can’t work ever again’ wasn’t a desirable outcome,” Halamka said. So they did a clinical trial of one, taking her Taxol dose down by 50 percent. Today she’s well and functional, and her hands and feet are just as they were before treatment. That is the kind of thing we need to use big data for, he said.

Telemedicine

Halamka is the nation’s expert in poisonous mushrooms and plants, and he does 900 telemedicine consultations every year (he is malpractice insured in all 50 US states).

He said, “Here I am with my iPhone, receiving images and cases from all over the world, and through just a virtual interaction, developing a care plan that keeps people healthy. It’s low cost and it’s efficient. And that’s the kind of expertise we all need access to, whether we’re urban or rural, whether you’re in the US or elsewhere.”

One challenge, however, is policy. State licenses and malpractice insurance can make crossing borders complicated. If a doctor in, say, North Dakota consults Halamka for a mushroom poisoning and Halamka advises a certain treatment, the North Dakota doctor ultimately decides whether to offer the treatment or not.

Blockchain

Halamka believes one of the main use cases for blockchain in medical IT is in auditing and integrity. When Harvard doctors are sued for malpractice, he said, he’s asked to provide 20 years’ worth of medical records to the plaintiff attorney, but there’s no guarantee or way to prove those records haven’t been altered in any way.

A blockchain audit trail would fix this problem. “When a note is signed put a hash of that note into the blockchain, twenty years go by, you can validate the note has not been changed,” Halamka said. You could also use it to show patient consent, or incentivize them to contribute their data or comply with treatment regimens.

On Their Way, Already Here

The technologies and use cases Halamka outlined aren’t decades or even years out—they’re up and running in hospitals today. Beth Israel Deaconess, he said, is using machine learning to read faxes, apply metadata, and insert information into medical records. They’re using mobile and an internet of things to keep congestive heart failure patients healthy in their homes. They’re pushing data across the community to track where patients are receiving care and help coordinate the best care at the lowest cost.

Robots that can perform precision surgery and AIs that can diagnose rare illnesses in minutes aren’t going to eliminate our need for physicians. In fact, if it’s applied in the right ways, tech will not only help doctors practice at the top of their licenses and hospitals to run with utmost efficiency—it will reduce the likelihood that we’ll end up there to begin with.

Image Credit: metamorworks / Shutterstock.com

abundance-infographic-v9-today

Why the World Is Still Getting Better—and That’s Likely to Continue

Why the World Is Still Getting Better—and That’s Likely to Continue

If you read or watch the news, you’ll likely think the world is falling to pieces. Trends like terrorism, climate change, and a growing population straining the planet’s finite resources can easily lead you to think our world is in crisis.

But there’s another story, a story the news doesn’t often report. This story is backed by data, and it says we’re actually living in the most peaceful, abundant time in history, and things are likely to continue getting better.

The News vs. the Data

The reality that’s often clouded by a constant stream of bad news is we’re actually seeing a massive drop in poverty, fewer deaths from violent crime and preventable diseases. On top of that, we’re the most educated populace to ever walk the planet.

“Violence has been in decline for thousands of years, and today we may be living in the most peaceful era in the existence of our species.” –Steven Pinker

In the last hundred years, we’ve seen the average human life expectancy nearly double, the global GDP per capita rise exponentially, and childhood mortality drop 10-fold.

abundance-infographic-v9-today

That’s pretty good progress! Maybe the world isn’t all gloom and doom.

If you’re still not convinced the world is getting better, check out the charts in this article from Vox and on Peter Diamandis’ website for a lot more data.

Abundance for All Is Possible

So now that you know the world isn’t so bad after all, here’s another thing to think about: it can get much better, very soon.

In their book Abundance: The Future Is Better Than You Think, Steven Kotler and Peter Diamandis suggest it may be possible for us to meet and even exceed the basic needs of all the people living on the planet today.

“In the hands of smart and driven innovators, science and technology take things which were once scarce and make them abundant and accessible to all.”

This means making sure every single person in the world has adequate food, water and shelter, as well as a good education, access to healthcare, and personal freedom.

This might seem unimaginable, especially if you tend to think the world is only getting worse. But given how much progress we’ve already made in the last few hundred years, coupled with the recent explosion of information sharing and new, powerful technologies, abundance for all is not as out of reach as you might believe.

Throughout history, we’ve seen that in the hands of smart and driven innovators, science and technology take things which were once scarce and make them abundant and accessible to all.

Napoleon III
Napoleon III

In Abundance, Diamandis and Kotler tell the story of how aluminum went from being one of the rarest metals on the planet to being one of the most abundant…

In the 1800s, aluminum was more valuable than silver and gold because it was rarer. So when Napoleon III entertained the King of Siam, the king and his guests were honored by being given aluminum utensils, while the rest of the dinner party ate with gold.

But aluminum is not really rare.

In fact, aluminum is the third most abundant element in the Earth’s crust, making up 8.3% of the weight of our planet. But it wasn’t until chemists Charles Martin Hall and Paul Héroult discovered how to use electrolysis to cheaply separate aluminum from surrounding materials that the element became suddenly abundant.

The problems keeping us from achieving a world where everyone’s basic needs are met may seem like resource problems — when in reality, many are accessibility problems.

The Engine Driving Us Toward Abundance: Exponential Technology

History is full of examples like the aluminum story.  The most powerful one of the last few decades is information technology. Think about all the things that computers and the internet made abundant that were previously far less accessible because of cost or availability …

Here are just a few examples:

  • Easy access to the world’s information
  • Ability to share information freely with anyone and everyone
  • Free/cheap long-distance communication
  • Buying and selling goods/services regardless of location

Less than two decades ago, when someone reached a certain level of economic stability, they could spend somewhere around $10K on stereos, cameras, entertainment systems, etc — today, we have all that equipment in the palm of our hand.

Now, there is a new generation of technologies heavily dependant on information technology and, therefore, similarly riding the wave of exponential growth. When put to the right use, emerging technologies like artificial intelligence, robotics, digital manufacturing, nano-materials and digital biology make it possible for us to drastically raise the standard of living for every person on the planet.

abundance-infographic-v9-tools

These are just some of the innovations which are unlocking currently scarce resources:

  • IBM’s Watson Health is being trained and used in medical facilities like the Cleveland Clinic to help doctors diagnose disease. In the future, it’s likely we’ll trust AI just as much, if not more than humans to diagnose disease, allowing people all over the world to have access to great diagnostic tools regardless of whether there is a well-trained doctor near them.
  • Self-driving cars are already on the roads of several American cities and will be coming to a road near you in the next couple years. Considering the average American spends nearly two hours driving every day, not having to drive would free up an increasingly scarce resource: time.

The Change-Makers

Today’s innovators can create enormous change because they have these incredible tools—which would have once been available only to big organizations—at their fingertips. And, as a result of our hyper-connected world, there is an unprecedented ability for people across the planet to work together to create solutions to some of our most pressing problems today.

“In today’s hyperlinked world, solving problems anywhere, solves problems everywhere.” –Peter Diamandis and Steven Kotler, Abundance

According to Diamandis and Kotler, there are three groups of people accelerating positive change.

abundance-infographic-v9-people1. DIY Innovators

In the 1970s and 1980s, the Homebrew Computer Club was a meeting place of “do-it-yourself” computer enthusiasts who shared ideas and spare parts. By the 1990s and 2000s, that little club became known as an inception point for the personal computer industry — dozens of companies, including Apple Computer, can directly trace their origins back to Homebrew.

Since then, we’ve seen the rise of the social entrepreneur, the Maker Movement and the DIY Bio movement, which have similar ambitions to democratize social reform, manufacturing, and biology, the way Homebrew democratized computers. These are the people who look for new opportunities and aren’t afraid to take risks to create something new that will change the status-quo.

2. Techno-Philanthropists

Unlike the robber barons of the 19th and early 20th centuries, today’s “techno-philanthropists” are not just giving away some of their wealth for a new museum, they are using their wealth to solve global problems and investing in social entrepreneurs aiming to do the same.

The Bill and Melinda Gates Foundation has given away at least $28 billion, with a strong focus on ending diseases like polio, malaria, and measles for good. Jeff Skoll, after cashing out of eBay with $2 billion in 1998, went on to create the Skoll Foundation, which funds social entrepreneurs across the world. And last year, Mark Zuckerberg and Priscilla Chan pledged to give away 99% of their $46 billion in Facebook stock during their lifetimes.

3. The Rising Billion

Cisco estimates that by 2020, there will be 4.1 billion people connected to the internet, up from 3 billion in 2015. This number might even be higher, given the efforts of companies like Facebook, Google, Virgin Group, and SpaceX to bring internet access to the world. That’s a billion new people in the next several years who will be connected to the global conversation, looking to learn, create and better their own lives and communities.In his book, Fortune at the Bottom of the Pyramid, C.K. Pahalad writes that finding co-creative ways to serve this rising market can help lift people out of poverty while creating viable businesses for inventive companies.

The Path to Abundance

Eager to create change, innovators armed with powerful technologies can accomplish incredible feats. Kotler and Diamandis imagine that the path to abundance occurs in three tiers:

  • Basic Needs (food, water, shelter)
  • Tools of Growth (energy, education, access to information)
  • Ideal Health and Freedom

abundance-infographic-v9-path

Of course, progress doesn’t always happen in a straight, logical way, but having a framework to visualize the needs is helpful.

Many people don’t believe it’s possible to end the persistent global problems we’re facing. However, looking at history, we can see many examples where technological tools have unlocked resources that previously seemed scarce.

Technological solutions are not always the answer, and we need social change and policy solutions as much as we need technology solutions. But we have seen time and time again, that powerful tools in the hands of innovative, driven change-makers can make the seemingly impossible happen.


You can download the full “Path to Abundance” infographic here. It was created under a CC BY-NC-ND license. If you share, please attribute to Singularity University.

Image Credit: janez volmajer / Shutterstock.com

Innovation Is on the Rise Worldwide. How Do You Measure It?

Innovation Is on the Rise Worldwide. How Do You Measure It?

How do you measure innovation?

Thanks to dropping costs, technology has become far more accessible than it used to be, and its proliferation has unleashed the creativity and resourcefulness of people around the world. We know great ideas are coming to life from China to Brazil and everywhere in between. But how do you get a read on the pulse of innovation in a given country across its economy?

A new report from the Singularity University chapter in Kiev, Ukraine aims to measure the country’s innovation with a broad look at several indicators across multiple sectors of the economy. The authors hope the Ukraine in the Global Innovation Dimension report can serve as a useful guide and an inspiration for those interested in similarly examining progress in their own countries or cities.

Over the 10-year period between 2007 and 2017, the authors looked at overall patenting activity, research in information technologies, international scientific publications by Ukrainian authors, mechanical engineering research, and patenting activity in agriculture, renewable energy, and pharmaceuticals.

Report co-author Igor Novikov said, “We chose agrotech, renewables, and pharma because there’s plenty of hype and media coverage surrounding these spheres, with a common understanding that Ukraine is quite strong in these fields. We wanted our first report to explore whether that in fact is the case.”

The authors used neighboring Poland as a basis of comparison for patenting activity. For perspective, Ukraine has a population of almost 44 million people, while Poland’s population is just over 38 million.

“Poland has strong historic and business connections with Ukraine, and is traditionally viewed as the closest ally and friend,” Novikov said. “Poland went through what Ukraine is going through right now over 27 years ago, and we wanted to see how a similar country, but within the EU market, is doing.”

He added that comparing Ukraine to the US, China, or even Russia wouldn’t be practical, as the countries’ circumstances are drastically different. However, it’s becoming more and more relevant to account for and be aware of activity in places that aren’t known as innovation hubs.

Silicon Valley’s heyday as the center of all things tech shows signs of being on the decline. But besides the issues the Valley and its most well-known companies have faced, the decentralized, accessible nature of technology itself is also helping democratize innovation. If you have a mobile phone, internet connectivity, and the time and dedication to bring an idea to life, you can do it—almost anywhere in the world. Those who stand to benefit most from this wave of nascent innovation are people farthest-removed from traditional tech hubs, in places with local problems that require local solutions.

The authors of the Ukraine report noted that innovation isn’t worth much if it doesn’t catalyze economic growth; the opportunity to commercialize intellectual property is crucial.

Novikov and his coauthors see their report as just the beginning. They plan to delve into additional industries and further examine the factors influencing creativity and inventiveness in Ukraine.

“This report is actually the first part of a series of such studies, our mission being to fully understand the innovation landscape of our country,” Novikov said.

Image Credit: Uhryn Larysa / Shutterstock.com

No Safety Driver Here—Volvo

No Safety Driver Here—Volvo’s New Driverless Truck Cuts the Cab

Each time there’s a headline about driverless trucking technology, another piece is taken out of the old equation. First, an Uber/Otto truck’s safety driver went hands-off once the truck reached the highway (and said truck successfully delivered its valuable cargo of 50,000 beers). Then, Starsky Robotics announced its trucks would start making autonomous deliveries without a human in the vehicle at all.

Now, Volvo has taken the tech one step further. Its new trucks not only won’t have safety drivers, they won’t even have the option of putting safety drivers behind the wheel, because there is no wheel—and no cab, either.

Vera, as the technology’s been dubbed, was unveiled in September, and consists of a sort of flat-Tesla-like electric car with a standard trailer hookup. The vehicles are connected to a cloud service, which also connects them to each other and to a control center. The control center monitors the trucks’ positioning (they’re designed to locate their position to within centimeters), battery charge, load content, service requirements, and other variables. The driveline and battery pack used in the cars are the same as those Volvo uses in its existing electric trucks.

You won’t see these cruising down an interstate highway, though, or even down a local highway. Vera trucks are designed to be used on short, repetitive routes contained within limited areas—think shipping ports, industrial parks, or logistics hubs. They’re limited to slower speeds than normal cars or trucks, and will be able to operate 24/7. “We will see much higher delivery precision, as well as improved flexibility and productivity,” said Mikael Karlsson, VP of Autonomous Solutions at Volvo Trucks. “Today’s operations are often designed according to standard daytime work hours, but a solution like Vera opens up the possibility of continuous round-the-clock operation and a more optimal flow. This in turn can minimize stock piles and increase overall productivity.”

The trucks are sort of like bigger versions of Amazon’s Kiva robots, which scoot around the aisles of warehouses and fulfillment centers moving pallets between shelves and fetching goods to be shipped.

Pairing trucks like Vera with robots like Kiva makes for a fascinating future landscape of logistics and transport; cargo will be moved from docks to warehouses by a large, flat robot-on-wheels, then distributed throughout that warehouse by smaller, flat robots-on-wheels. To really see the automated process through to the end point, even smaller flat robots-on-wheels will be used to deliver peoples’ goods right to their front doors.

Sounds like a lot of robots and not a lot of humans, right? Anticipating its technology’s implication in the ongoing uproar over technological unemployment, Volvo has already made statements about its intentions to continue to employ humans alongside the driverless trucks. “I foresee that there will be an increased level of automation where it makes sense, such as for repetitive tasks. This in turn will drive prosperity and increase the need for truck drivers in other applications,” said Karlsson.

The end-to-end automation concept has already been put into practice in Caofeidian, a northern Chinese city that houses the world’s first fully autonomous harbor, aiming to be operational by the end of this year. Besides replacing human-driven trucks with autonomous ones (made by Chinese startup TuSimple), the port is using automated cranes and a coordinating central control system.

Besides Uber/Otto, Tesla, or Daimler, which are all working on driverless trucks with a more conventional design (meaning they still have a cab and look like you’d expect a truck to look), Volvo also has competition from a company called Einride. The Swedish startup’s electric, cabless T/Pod looks a lot like Vera, but has some fundamental differences. Rather than being tailored to short distances and high capacity, Einride’s trucks are meant for medium distance and capacity, like moving goods from a distribution center to a series of local stores.

Vera trucks are currently still in the development phase. But since their intended use is quite specific and limited (Karlsson noted “Vera is not intended to be a solution for everyone, everywhere”), the technology could likely be rolled out faster than its more general-use counterparts. Having cabless electric trucks take over short routes in closed environments would be one more baby step along the road to a driverless future—and a testament to the fact that self-driving technology will move into our lives and our jobs incrementally, ostensibly giving us the time we’ll need to adapt and adjust.

Image Credit: Volvo Trucks

This Robotic Warehouse Fills Orders in Five Minutes, and Fits in City Centers

This Robotic Warehouse Fills Orders in Five Minutes, and Fits in City Centers

Shopping is becoming less and less of a consumer experience—or, for many, less of a chore—as the list of things that can be bought online and delivered to our homes grows to include, well, almost anything you can think of. An Israeli startup is working to make shopping and deliveries even faster and cheaper—and they’re succeeding.

Last week, CommonSense Robotics announced the launch of its first autonomous micro-fulfillment center in Tel Aviv. The company claims the facility is the smallest of its type in the world at 6,000 square feet. For comparison’s sake—most fulfillment hubs that incorporate robotics are at least 120,000 square feet. Amazon’s upcoming facility in Bessemer, Alabama will be a massive 855,000 square feet.

The thing about a building whose square footage is in the hundred-thousands is, you can fit a lot of stuff inside it, but there aren’t many places you can fit the building itself, especially not in major urban areas. So most fulfillment centers are outside cities, which means more time and more money to get your Moroccan oil shampoo, or your vegetable garden starter kit, or your 100-pack of organic protein bars from that fulfillment center to your front door.

CommonSense Robotics built the Tel Aviv center in an area that was previously thought too small for warehouse infrastructure. “In order to fit our site into small, tight urban spaces, we’ve designed every single element of it to optimize for space efficiency,” said Avital Sterngold, VP of operations. Using a robotic sorting system that includes hundreds of robots, plus AI software that assigns them specific tasks, the facility can prepare orders in less than five minutes end-to-end.

It’s not all automated, though—there’s still some human labor in the mix. The robots fetch goods and bring them to a team of people, who then pack the individual orders.

CommonSense raised $20 million this year in a funding round led by Palo Alto-based Playground Global. The company hopes to expand its operations to the US and UK in 2019. Its business model is to charge retailers a fee for each order fulfilled, while maintaining ownership and operation of the fulfillment centers. The first retailers to jump on the bandwagon were Super-Pharm, a drugstore chain, and Rami Levy, a retail supermarket chain.

“Staying competitive in today’s market is anchored by delivering orders quickly and determining how to fulfill and deliver orders efficiently, which are always the most complex aspects of any ecommerce operation. With robotics, we will be able to fulfill and deliver orders in under one hour, all while saving costs on said fulfillment and delivery,” said Super-Pharm VP Yossi Cohen. “Before CommonSense Robotics, we offered our customers next-day home delivery. With this partnership, we are now able to offer our customers same-day delivery and will very soon be offering them one-hour delivery.”

Long live the instant gratification economy—and the increasingly sophisticated technology that’s enabling it.

Image Credit: SasinTipchai / Shutterstock.com